3.21 \(\int \csc ^{\frac {4}{3}}(c+d x) \sqrt {a+a \csc (c+d x)} \, dx\)

Optimal. Leaf size=254 \[ -\frac {4\ 3^{3/4} \sqrt {2+\sqrt {3}} a^2 \cot (c+d x) \left (1-\sqrt [3]{\csc (c+d x)}\right ) \sqrt {\frac {\csc ^{\frac {2}{3}}(c+d x)+\sqrt [3]{\csc (c+d x)}+1}{\left (-\sqrt [3]{\csc (c+d x)}+\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {-\sqrt [3]{\csc (c+d x)}-\sqrt {3}+1}{-\sqrt [3]{\csc (c+d x)}+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{5 d \sqrt {\frac {1-\sqrt [3]{\csc (c+d x)}}{\left (-\sqrt [3]{\csc (c+d x)}+\sqrt {3}+1\right )^2}} (a-a \csc (c+d x)) \sqrt {a \csc (c+d x)+a}}-\frac {6 a \cos (c+d x) \csc ^{\frac {4}{3}}(c+d x)}{5 d \sqrt {a \csc (c+d x)+a}} \]

[Out]

-6/5*a*cos(d*x+c)*csc(d*x+c)^(4/3)/d/(a+a*csc(d*x+c))^(1/2)-4/5*3^(3/4)*a^2*cot(d*x+c)*(1-csc(d*x+c)^(1/3))*El
lipticF((1-csc(d*x+c)^(1/3)-3^(1/2))/(1-csc(d*x+c)^(1/3)+3^(1/2)),I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/2*2^(1/2))*((1
+csc(d*x+c)^(1/3)+csc(d*x+c)^(2/3))/(1-csc(d*x+c)^(1/3)+3^(1/2))^2)^(1/2)/d/(a-a*csc(d*x+c))/(a+a*csc(d*x+c))^
(1/2)/((1-csc(d*x+c)^(1/3))/(1-csc(d*x+c)^(1/3)+3^(1/2))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.28, antiderivative size = 254, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {3806, 50, 63, 218} \[ -\frac {4\ 3^{3/4} \sqrt {2+\sqrt {3}} a^2 \cot (c+d x) \left (1-\sqrt [3]{\csc (c+d x)}\right ) \sqrt {\frac {\csc ^{\frac {2}{3}}(c+d x)+\sqrt [3]{\csc (c+d x)}+1}{\left (-\sqrt [3]{\csc (c+d x)}+\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {-\sqrt [3]{\csc (c+d x)}-\sqrt {3}+1}{-\sqrt [3]{\csc (c+d x)}+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{5 d \sqrt {\frac {1-\sqrt [3]{\csc (c+d x)}}{\left (-\sqrt [3]{\csc (c+d x)}+\sqrt {3}+1\right )^2}} (a-a \csc (c+d x)) \sqrt {a \csc (c+d x)+a}}-\frac {6 a \cos (c+d x) \csc ^{\frac {4}{3}}(c+d x)}{5 d \sqrt {a \csc (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Csc[c + d*x]^(4/3)*Sqrt[a + a*Csc[c + d*x]],x]

[Out]

(-6*a*Cos[c + d*x]*Csc[c + d*x]^(4/3))/(5*d*Sqrt[a + a*Csc[c + d*x]]) - (4*3^(3/4)*Sqrt[2 + Sqrt[3]]*a^2*Cot[c
 + d*x]*(1 - Csc[c + d*x]^(1/3))*Sqrt[(1 + Csc[c + d*x]^(1/3) + Csc[c + d*x]^(2/3))/(1 + Sqrt[3] - Csc[c + d*x
]^(1/3))^2]*EllipticF[ArcSin[(1 - Sqrt[3] - Csc[c + d*x]^(1/3))/(1 + Sqrt[3] - Csc[c + d*x]^(1/3))], -7 - 4*Sq
rt[3]])/(5*d*Sqrt[(1 - Csc[c + d*x]^(1/3))/(1 + Sqrt[3] - Csc[c + d*x]^(1/3))^2]*(a - a*Csc[c + d*x])*Sqrt[a +
 a*Csc[c + d*x]])

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 3806

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(a^2*d*
Cot[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]]), Subst[Int[(d*x)^(n - 1)/Sqrt[a - b*x], x]
, x, Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \csc ^{\frac {4}{3}}(c+d x) \sqrt {a+a \csc (c+d x)} \, dx &=\frac {\left (a^2 \cot (c+d x)\right ) \operatorname {Subst}\left (\int \frac {\sqrt [3]{x}}{\sqrt {a-a x}} \, dx,x,\csc (c+d x)\right )}{d \sqrt {a-a \csc (c+d x)} \sqrt {a+a \csc (c+d x)}}\\ &=-\frac {6 a \cos (c+d x) \csc ^{\frac {4}{3}}(c+d x)}{5 d \sqrt {a+a \csc (c+d x)}}+\frac {\left (2 a^2 \cot (c+d x)\right ) \operatorname {Subst}\left (\int \frac {1}{x^{2/3} \sqrt {a-a x}} \, dx,x,\csc (c+d x)\right )}{5 d \sqrt {a-a \csc (c+d x)} \sqrt {a+a \csc (c+d x)}}\\ &=-\frac {6 a \cos (c+d x) \csc ^{\frac {4}{3}}(c+d x)}{5 d \sqrt {a+a \csc (c+d x)}}+\frac {\left (6 a^2 \cot (c+d x)\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a-a x^3}} \, dx,x,\sqrt [3]{\csc (c+d x)}\right )}{5 d \sqrt {a-a \csc (c+d x)} \sqrt {a+a \csc (c+d x)}}\\ &=-\frac {6 a \cos (c+d x) \csc ^{\frac {4}{3}}(c+d x)}{5 d \sqrt {a+a \csc (c+d x)}}-\frac {4\ 3^{3/4} \sqrt {2+\sqrt {3}} a^2 \cot (c+d x) \left (1-\sqrt [3]{\csc (c+d x)}\right ) \sqrt {\frac {1+\sqrt [3]{\csc (c+d x)}+\csc ^{\frac {2}{3}}(c+d x)}{\left (1+\sqrt {3}-\sqrt [3]{\csc (c+d x)}\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}-\sqrt [3]{\csc (c+d x)}}{1+\sqrt {3}-\sqrt [3]{\csc (c+d x)}}\right )|-7-4 \sqrt {3}\right )}{5 d \sqrt {\frac {1-\sqrt [3]{\csc (c+d x)}}{\left (1+\sqrt {3}-\sqrt [3]{\csc (c+d x)}\right )^2}} (a-a \csc (c+d x)) \sqrt {a+a \csc (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.38, size = 102, normalized size = 0.40 \[ -\frac {2 \sqrt {a (\csc (c+d x)+1)} \left (2 \, _2F_1\left (\frac {1}{2},\frac {2}{3};\frac {3}{2};1-\csc (c+d x)\right )+3 \sqrt [3]{\csc (c+d x)}\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )}{5 d \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[c + d*x]^(4/3)*Sqrt[a + a*Csc[c + d*x]],x]

[Out]

(-2*Sqrt[a*(1 + Csc[c + d*x])]*(3*Csc[c + d*x]^(1/3) + 2*Hypergeometric2F1[1/2, 2/3, 3/2, 1 - Csc[c + d*x]])*(
Cos[(c + d*x)/2] - Sin[(c + d*x)/2]))/(5*d*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))

________________________________________________________________________________________

fricas [F]  time = 0.95, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {a \csc \left (d x + c\right ) + a} \csc \left (d x + c\right )^{\frac {4}{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^(4/3)*(a+a*csc(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(a*csc(d*x + c) + a)*csc(d*x + c)^(4/3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a \csc \left (d x + c\right ) + a} \csc \left (d x + c\right )^{\frac {4}{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^(4/3)*(a+a*csc(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*csc(d*x + c) + a)*csc(d*x + c)^(4/3), x)

________________________________________________________________________________________

maple [F]  time = 2.64, size = 0, normalized size = 0.00 \[ \int \left (\csc ^{\frac {4}{3}}\left (d x +c \right )\right ) \sqrt {a +a \csc \left (d x +c \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(d*x+c)^(4/3)*(a+a*csc(d*x+c))^(1/2),x)

[Out]

int(csc(d*x+c)^(4/3)*(a+a*csc(d*x+c))^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a \csc \left (d x + c\right ) + a} \csc \left (d x + c\right )^{\frac {4}{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^(4/3)*(a+a*csc(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*csc(d*x + c) + a)*csc(d*x + c)^(4/3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \sqrt {a+\frac {a}{\sin \left (c+d\,x\right )}}\,{\left (\frac {1}{\sin \left (c+d\,x\right )}\right )}^{4/3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/sin(c + d*x))^(1/2)*(1/sin(c + d*x))^(4/3),x)

[Out]

int((a + a/sin(c + d*x))^(1/2)*(1/sin(c + d*x))^(4/3), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)**(4/3)*(a+a*csc(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________